Maximum Principle for Analytic Functions on Open Riemann Surfaces.
نویسندگان
چکیده
منابع مشابه
Harmonic morphisms onto Riemann surfaces and generalized analytic functions
© Annales de l’institut Fourier, 1987, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...
متن کاملOn the Maximum Principle for Harmonic Functions
Some generalizations of the maximum principle for harmonic functions are discussed. §
متن کاملIdeal Theory on Open Riemann Surfaces
Introduction. The theorems of the classical ideal theory in fields of algebraic numbers hold in rings of analytic functions on compact Riemann surfaces. The surfaces admitted in our discussion are closely related to algebraic surfaces; we deal either with compact surfaces from which a finite number of points are omitted or, more generally, with surfaces determined by an algebroid function. The ...
متن کاملMorse theory for analytic functions on surfaces
In this paper we deal with analytic functions f : S → R defined on a compact two dimensional Riemannian surface S whose critical points are semi degenerated (critical points having a non identically vanishing Hessian). To any element p of the set of semi degenerated critical points Q we assign an unique index which can take the values −1, 0 or 1, and prove that Q is made up of finitely many (cr...
متن کاملMeromorphic Functions on Certain Riemann Surfaces
1. Throughout the paper we shall denote by R a Riemann surface. For a domain Í2 in P, we represent by AB(Q) the class of all the singlevalued bounded analytic functions on the closure Ü. For a meromorphic function / on a domain ß, we use the notation viw\f, Q.) to express the number of times that/ attains w in ß. Definition 1. We say that REWIb if the maximum principle suplen \fip)\ =sup3,ean \...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kyoto Journal of Mathematics
سال: 1953
ISSN: 2156-2261
DOI: 10.1215/kjm/1250777511